- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Aird, Amanda (1)
-
All, Cassidy (1)
-
Buhayh, Anas (1)
-
Burke, Robin (1)
-
Homola, Martin (1)
-
Mattei, Nicholas (1)
-
Štefancová, Elena (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fairness in recommender systems is a complex concept, involving multiple definitions, different parties for whom fairness is sought, and various scopes over which fairness might be measured. Re- searchers seeking fairness-aware systems have derived a variety of solutions, usually highly tailored to specific choices along each of these dimensions, and typically aimed at tackling a single fairness concern, i.e., a single definition for a specific stakeholder group and measurement scope. However, in practical contexts, there are a multiplicity of fairness concerns within a given recommendation application and solutions limited to a single dimension are therefore less useful. We explore a general solution to recommender system fairness using social choice methods to integrate multiple hetero- geneous definitions. In this paper, we extend group-fairness results from prior research to provider-side individual fairness, demon- strating in multiple datasets that both individual and group fairness objectives can be integrated and optimized jointly. We identify both synergies and tensions among different objectives with individ- ual fairness correlated with group fairness for some groups and anti-correlated with others.more » « lessFree, publicly-accessible full text available September 7, 2026
An official website of the United States government
